β -delayed proton decays and spin assignments for ¹⁴⁰Tb, ¹⁴¹Dy and ¹⁴³Dy

S.-W. Xu^{1,a}, Y.-X. Xie¹, F.-R. Xu², H.-L. Liu², and Z.-K. Li¹

 1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PRC

 $^2\,$ Department of Technical Physics, Peking University, Beijing 100871, PRC

Received: 1 January 2006 / Revised version: 24 April 2006 / Published online: 29 May 2006 – © Società Italiana di Fisica / Springer-Verlag 2006 Communicated by D. Schwalm

Abstract. The proton-rich isotopes ¹⁴⁰Tb and ¹⁴¹Dy were produced via the fusion evaporation reaction 40 Ca + 106 Cd. Their β -delayed proton decays were studied by p- γ coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, γ -transitions following the proton emission, as well as β -delayed proton branching ratios to the low-lying states in the grand-daughter nuclei were determined. Comparing the experimental data with statistical model calculations, the ground-state spins of ¹⁴⁰Tb and ¹⁴¹Dy were found to be consistent with 7 and 9/2, respectively. The configuration-constrained nuclear potential energy surfaces (NPES) of ¹⁴⁰Tb and ¹⁴¹Dy were calculated using the Woods-Saxon-Strutinsky method, which suggest the ground-state spins and parities of ¹⁴⁰Tb and ¹⁴¹Dy to be 7⁺ and 9/2⁻, respectively. In addition, the configuration-constrained NPES of ¹⁴³Dy were calculated, which predict a 1/2⁺ ground state and a 11/2⁻ isomer with excitation energy of 198 keV. These findings are consistent with our previous experimental data on ¹⁴³Dy reported in Eur. Phys. J. A **16**, 347 (2003).

PACS. 23.40.Hc Relation with nuclear matrix elements and nuclear structure – 21.10.Hw Spin, parity, and isobaric spin – 24.10.Pa Thermal and statistical models – 27.60.+j $90 \le A \le 149$

Wilmarth *et al.* [1] studied the β -delayed proton (β p) decays of ¹⁴⁰Tb and ¹⁴¹Dy near the proton drip line using the ISOL facility at LBL and reported the corresponding half-lives to be (2.4 ± 0.5) s and (0.9 ± 0.2) s, respectively. In addition, γ -rays of 329 and 508 keV were observed to follow the βp decay of ¹⁴¹Dy, which corresponds to the $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions in the grand-daughter nucleus ¹⁴⁰Gd. Later Gilat *et al.* [2] pointed out that the observed relative intensities of the 329 and 508 keV γ -rays observed in [1] are neither consistent with a $1/2^+$ nor with a $11/2^{-}$ assignment for the spin and parity of the precursor ¹⁴¹Dy. Instead, Gilat *et al.* suggested the spin and parity of ¹⁴¹Dy to be $9/2^-$, which was supported by their shell model calculation. The (EC + β^+) decay of ¹⁴⁰Tb was first observed by Firestone [3] and the spin and parity of ¹⁴⁰Tb was suggested to be 5⁺. Detailed data for the $(\acute{EC} + \beta^+)$ decay of ¹⁴⁰Tb were reported by our group [4], including the (2.1 ± 0.4) s half-life for ¹⁴⁰Tb decay, and the spin and parity of 140 Tb was suggested to be 7^+ instead of 5⁺. In the present work new studies on the β p decays of ¹⁴⁰Tb and ¹⁴¹Dy are reported, and the final spin and parity assignments for ¹⁴⁰Tb and ¹⁴¹Dy are proposed.

The experiment described here was carried out at the Sector-Focusing Cyclotron in the Institute of Modern Physics, Lanzhou, China. A schematic view of the experimental set-up is shown in fig. 1 of ref. [5]. A 232 MeV ${}^{40}\text{Ca}^{12+}$ beam from the cyclotron entered a target chamber filled with 1 bar helium through a $1.89 \,\mathrm{mg/cm^2}$ thick Havar window. After traversing a 4.2 cm thick layer of helium gas and an aluminum degrader, the beam finally hits a 106 Cd target (75% enriched) of about 1.8 mg/cm^2 . Four identical targets were mounted on a copper wheel surrounded by a cooling device, and the wheel was rotated by 90° once every 150 seconds. The beam energy in the middle of the target was 182 MeV, and the beam intensity was about $0.5 \,\mathrm{e}\mu\mathrm{A}$. The ¹⁴⁰Tb and ¹⁴¹Dy were produced via the αn (or 2p3n) and αpn (or 3p3n) evaporation channels, respectively. We used a helium jet in combination with a tape transport system to periodically move the radioactivity into a shielded counting room, using PbCl₂ at 430 °C as aerosol. The length of the capillary was about 6 m. The collection time, tape moving time, waiting time, and accumulation time were adjusted to 1.00, 0.16, 0.16, and 0.84 s, respectively. To study the β -delayed proton decays, proton-gamma coincidence measurements were carried out [6-8]. Two 570 mm² \times 350 μ m totally depleted

^a e-mail: xsw@lzb.ac.cn

Table 1. Calculated and experimental relative branching ratios $(b_{\beta p})$ to different final states in ¹³⁹Eu from the β p decay of ¹⁴⁰Tb, assuming different values for the initial spin and parity of ¹⁴⁰Tb. The experimental relative $b_{\beta p}$ leading to the 15/2⁻ state was normalized to 30.

Initial spin	Relative $b_{\beta p}$ to the final states						
and parity	G.S.	$323\mathrm{keV}$	$427\mathrm{keV}$	$531\mathrm{keV}$	$877\mathrm{keV}$		
of 140 Tb	$(11/2^{-})$	$(15/2^{-})$	$(13/2_1^-)$	$(13/2_2^-)$	$(19/2^{-})$		
6^{-}	66.9	13.0	12.1	7.9	0.1		
6^+	63.3	14.2	13.4	8.8	0.2		
7^{-}	46.5	27.8	15.1	9.7	0.9		
7^+	45.6	29.5	14.6	9.6	0.7		
8-	28.9	44.4	13.4	8.7	4.5		
8+	24.7	43.6	15.6	10.3	5.7		
Exp. value		30 ± 4	12 ± 3	8.5 ± 2	< 1		

Fig. 1. The measured $\gamma(X)$ -ray spectrum in coincidence with delayed protons from 3.0 to 7.0 MeV observed in the reaction ${}^{40}\text{Ca} + {}^{106}\text{Cd}$. The intense peaks are labeled by their energies in keV and their β p precursors.

silicon surface barrier detectors located on two opposite sides of the movable tape were used to detect the protons. Behind each silicon detector a coaxial HpGe(GMX) was placed to observe $\gamma(X)$ -rays. Energy and time spectra of $\gamma(X)$ -rays and protons were recorded in both single and coincidence modes.

The observed $\gamma(X)$ -ray spectrum gated on β -delayed protons of 3.0–7.0 MeV is shown in fig. 1. The intense peaks, except 511 keV and X-rays, are labeled with their energies in keV and their β -delayed proton precursors. In particular, the 323, 427 and 531 keV γ lines were assigned to the $15/2^- \rightarrow 11/2^-$ and to two different $13/2^- \rightarrow$ $11/2^-$ transitions in the proton daughter nucleus ¹³⁹Eu [9] following the β p decay of ¹⁴⁰Tb, while the 329, 508 and

Fig. 2. The energy spectrum of β -delayed protons gated on the 323 keV γ line in ¹³⁹Eu (histogram: experimental result; solid line: statistical-model calculations assuming an initial spin of 7 for the β p precursor ¹⁴⁰Tb). The insert displays the decay curve of the 323 keV γ line gated on the β -delayed protons.

628 keV γ lines were assigned to the $2^+ \rightarrow 0^+$, $4^+ \rightarrow 2^+$ and $6^+ \rightarrow 4^+$ transitions in the proton daughter nucleus ¹⁴⁰Gd [10] following the β p decay of ¹⁴¹Dy. We did not observe a γ line at an energy of 554 keV, which would correspond to the $19/2^- \rightarrow 15/2^-$ transition in ¹³⁹Eu.

The energy spectrum of β -delayed protons gated on the 323 keV γ line of ¹³⁹Eu is shown in fig. 2, while the inset displays the decay curve of the 323 keV γ line when gated on the β -delayed protons. From the decay curve the half-life of ¹⁴⁰Tb was extracted to be (2.0 ± 0.5) s, which is consistent with the result given by Wilmarth *et al.* [1] as well as with our previous result reported in ref. [4].

The relative branching ratios $(b_{\beta p})$ to different final states in the proton daughter nucleus ¹³⁹Eu observed in the βp decay of ¹⁴⁰Tb and the proton energy spectra were calculated for various values of the initial spin and parity of ¹⁴⁰Tb using a statistical model [11], assuming a structureless Gamow-Teller (GT) β -strength function obtained from Gross theory [12]. The calculated $b_{\beta p}$ are listed in table 1 together with the experimental values, which were determined by means of the relative intensities of the correspondent γ lines in fig. 1. Unfortunately, we could not

Fig. 3. The energy spectrum of β -delayed protons gated on the 329 keV γ line in ¹⁴⁰Gd (histogram: experimental result; solid line: statistical-model calculations assuming an initial spin of 9/2 for the β p precursor ¹⁴¹Dy). The insert displays the decay curve of the 329 keV γ line gated on the β -delayed protons.

Table 2. Calculated and experimental relative branching ratios $(b_{\beta p})$ to different final states in ¹⁴⁰Gd from the β p decay of ¹⁴¹Dy, assuming different values for the initial spin and parity of ¹⁴¹Dy. The experimental relative $b_{\beta p}$ leading to the 2⁺ state was normalized to 50.

Initial spin	Relative $b_{\beta p}$ to the final states					
and parity	G. S.	$329\mathrm{keV}$	$836\mathrm{keV}$	$1464\mathrm{keV}$		
of 141 Dy	(0^+)	(2^+)	(4^+)	(6^+)		
$7/2^{-}$	18.0	59.4	22.1	0.4		
$7/2^+$	12.8	64.0	22.5	0.7		
$9/2^{-}$	4.9	49.2	41.1	4.8		
$9/2^+$	9.5	48.6	38.8	3.1		
$11/2^{-}$	3.9	32.3	50.1	13.6		
$11/2^+$	1.2	29.3	55.3	14.3		
Exp. value		50 ± 6	39 ± 8	7 ± 4		

obtain the experimental $b_{\beta p}$ to the ground state in ¹³⁹Eu because of the restriction of the p- γ coincidence method. Comparing the calculated branching ratios with the experimental values, the closest agreement is found when assuming the ground-state spin and parity of ¹⁴⁰Tb to be 7⁺ or 7⁻. Moreover, the proton energy spectrum is reproduced reasonably well if ¹⁴⁰Tb is assumed to have 7⁺ or 7⁻ (see fig. 2), the difference of the calculated energy spectra between the two parities being too small to be seen in fig. 2.

The energy spectrum of β -delayed protons gated on the 329 keV γ line of ¹⁴⁰Gd is shown in fig. 3, while the inset displays the decay curve of the 329 keV γ line when gated on the β -delayed protons. From the decay curve the half-life of ¹⁴¹Dy was extracted to be (0.9 ± 0.2) s, which is consistent with the result given by Wilmarth *et al.* [1].

The relative $b_{\beta p}$ to different final states in the proton daughter nucleus ¹⁴⁰Gd observed in the β -delayed proton decay of ¹⁴¹Dy and the proton energy spectra were also

calculated for various values of the initial spin and parity of ¹⁴⁰Tb using the statistical model [11]. The calculated $b_{\beta p}$ are given in table 2 together with the experimental values. Comparing the calculated branching ratios with the experimental values, the closest agreement is found when assuming the ground-state spin and parity of ¹⁴¹Dy to be 9/2⁺ or 9/2⁻. Moreover, the proton energy spectrum is reproduced reasonably well if ¹⁴¹Dy is assumed to have 9/2⁺ or 9/2⁻ (see fig. 3), the difference of the calculated energy spectra between the two parities being too small to be seen in fig. 3.

To shed more light on the ground-state properties of ¹⁴⁰Tb and ¹⁴¹Dy, the configuration-constrained NPES were calculated using the Woods-Saxon-Strutinsky method [13]. For ¹⁴⁰Tb a minimum at deformation parameters $\beta_2 = 0.243$ and $\gamma = 22.5^{\circ}$ was found, which corresponds to the configuration ($\pi 5/2^{-}[532] \times \nu 9/2^{-}[514]$) 7⁺, while for ¹⁴¹Dy a minimum at $\beta_2 = 0.242$ and $\gamma = 21.5^{\circ}$ was observed corresponding to the configuration ($\nu 9/2^{-}[514]$) 9/2⁻. These findings are not only in good agreement with the experimental results related to β p decay, but also with the spin assignments for ¹⁴¹Dy given by Gilat *et al.* [2] and for ¹⁴⁰Tb as deduced in our previous study of the (EC + β^+) decay of ¹⁴⁰Tb [4]. We, therefore, assign 7⁺ and 9/2⁻ to the ground state of ¹⁴⁰Tb and ¹⁴¹Dy, respectively.

The ground-state spin and parity of ¹⁴³Dy was proposed as $1/2^+$ by Audi *et al.* [14] based on systematics and later supported by an in-beam γ study [15]. Moreover, the existence of an $11/2^-$ isomer with the energy of 310.7 keV was conjectured from these in-beam γ studies. Later, the decay of ¹⁴³Dy was observed and (EC + β^+) as well as β p decay schemes for the $1/2^+$ ground state and the $11/2^-$ isomer of ¹⁴³Dy were proposed by us in ref. [5]. Calculating the configuration-constrained NPES also for ¹⁴³Dy, a minimum at $\beta_2 = 0.202$ and $\gamma = 26^\circ$ was obtained, which corresponds to the configuration of $\nu 1/2^+$ [400]. In addition, a second minimum at $\beta_2 = 0.198$ and $\gamma = 47^\circ$ was found, which corresponds to the spin assignment of $11/2^-$. Thus the NPES do support also our previous experimental results obtained for ¹⁴³Dy.

This work was supported by the National Natural Science Foundation of China (10375078 and 10475002).

References

- P.A. Wilmarth, J.M. Nitschke, R.B. Firestone *et al.*, Z. Phys. A **325**, 485 (1986).
- J. Gilat, J.M. Nitschke, P.A. Wilmarth *et al.*, Phys. Rev. C 40, 2249 (1989).
- R.B. Firestone, J. Gilat, J.M. Nitschke *et al.*, Phys. Rev. C 43, 1066 (1991).
- S.-W. Xu, Y.-X. Xie, Y. Yu *et al.*, Eur. Phys. J. A 8, 437 (2000).
- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Eur. Phys. J. A 16, 347 (2003).
- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Phys. Rev. C **60**, 061302(R) (1999).

- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Z. Phys. A **356**, 227 (1996).
- Z.-K. Li, S.-W. Xu, Y.-X. Xie *et al.*, Phys. Rev. C 56, 1157 (1997).
- 9. T.W. Burrows, Nucl. Data Sheets **92**, 759 (2001).
- 10. L.K. Peker, Nucl. Data Sheets **73**, 261 (1994).
- P. Hornshoj, K. Wilsky, P.G. Hansen *et al.*, Nucl. Phys. A 187, 609 (1972).
- 12. K. Takahashi, M. Yamada, T. Kondoh, At. Data Nucl. Data Tables **12**, 101 (1973).
- W. Nazarewicz, J. Dudek, R. Bengtsson *et al.*, Nucl. Phys. A **435**, 397 (1985).
- G. Audi, O. Bersillon, J. Blachot *et al.*, Nucl. Phys. A 624, 1 (1997).
- 15. K.J. Tuli, Nucl. Data Sheets 94, 771 (2001).