The European PhYsical Journal A

β-delayed proton decays and spin assignments for ${ }^{140} \mathbf{T b},{ }^{141} \mathrm{Dy}$ and ${ }^{143} \mathrm{Dy}$

S.-W. Xu ${ }^{1, a}$, Y.-X. Xie ${ }^{1}$, F.-R. Xu ${ }^{2}$, H.-L. Liu ${ }^{2}$, and Z.-K. Li ${ }^{1}$
${ }^{1}$ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PRC
${ }^{2}$ Department of Technical Physics, Peking University, Beijing 100871, PRC

Received: 1 January 2006 / Revised version: 24 April 2006 /
Published online: 29 May 2006 - © Società Italiana di Fisica / Springer-Verlag 2006
Communicated by D. Schwalm

Abstract

The proton-rich isotopes ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$ were produced via the fusion evaporation reaction ${ }^{40} \mathrm{Ca}+{ }^{106} \mathrm{Cd}$. Their β-delayed proton decays were studied by $\mathrm{p}-\gamma$ coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, γ-transitions following the proton emission, as well as β-delayed proton branching ratios to the low-lying states in the grand-daughter nuclei were determined. Comparing the experimental data with statistical model calculations, the ground-state spins of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141}$ Dy were found to be consistent with 7 and $9 / 2$, respectively. The configuration-constrained nuclear potential energy surfaces (NPES) of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141}$ Dy were calculated using the Woods-SaxonStrutinsky method, which suggest the ground-state spins and parities of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$ to be 7^{+}and $9 / 2^{-}$, respectively. In addition, the configuration-constrained NPES of ${ }^{143}$ Dy were calculated, which predict a $1 / 2^{+}$ground state and a $11 / 2^{-}$isomer with excitation energy of 198 keV . These findings are consistent with our previous experimental data on ${ }^{143}$ Dy reported in Eur. Phys. J. A 16, 347 (2003).

PACS. 23.40.Hc Relation with nuclear matrix elements and nuclear structure - 21.10.Hw Spin, parity, and isobaric spin $-24.10 . \mathrm{Pa}$ Thermal and statistical models $-27.60 .+\mathrm{j} 90 \leq A \leq 149$

Wilmarth et al. [1] studied the β-delayed proton $(\beta \mathrm{p})$ decays of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141}$ Dy near the proton drip line using the ISOL facility at LBL and reported the corresponding half-lives to be $(2.4 \pm 0.5) \mathrm{s}$ and $(0.9 \pm 0.2) \mathrm{s}$, respectively. In addition, γ-rays of 329 and 508 keV were observed to follow the β p decay of ${ }^{141} \mathrm{Dy}$, which corresponds to the $2^{+} \rightarrow 0^{+}$and $4^{+} \rightarrow 2^{+}$transitions in the grand-daughter nucleus ${ }^{140} \mathrm{Gd}$. Later Gilat et al. [2] pointed out that the observed relative intensities of the 329 and $508 \mathrm{keV} \gamma$-rays observed in [1] are neither consistent with a $1 / 2^{+}$nor with a $11 / 2^{-}$assignment for the spin and parity of the precursor ${ }^{141}$ Dy. Instead, Gilat et al. suggested the spin and parity of ${ }^{141}$ Dy to be $9 / 2^{-}$, which was supported by their shell model calculation. The ($\mathrm{EC}+\beta^{+}$) decay of ${ }^{140} \mathrm{~Tb}$ was first observed by Firestone [3] and the spin and parity of ${ }^{140} \mathrm{~Tb}$ was suggested to be 5^{+}. Detailed data for the $\left(\mathrm{EC}+\beta^{+}\right)$decay of ${ }^{140} \mathrm{~Tb}$ were reported by our group [4], including the $(2.1 \pm 0.4) \mathrm{s}$ half-life for ${ }^{140} \mathrm{~Tb}$ decay, and the spin and parity of ${ }^{140} \mathrm{~Tb}$ was suggested to be 7^{+}instead of 5^{+}. In the present work new studies on the β p decays of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$ are reported, and the final spin and parity assignments for ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$ are proposed.

[^0]The experiment described here was carried out at the Sector-Focusing Cyclotron in the Institute of Modern Physics, Lanzhou, China. A schematic view of the experimental set-up is shown in fig. 1 of ref. [5]. A 232 MeV ${ }^{40} \mathrm{Ca}^{12+}$ beam from the cyclotron entered a target chamber filled with 1 bar helium through a $1.89 \mathrm{mg} / \mathrm{cm}^{2}$ thick Havar window. After traversing a 4.2 cm thick layer of helium gas and an aluminum degrader, the beam finally hits a ${ }^{106} \mathrm{Cd}$ target (75% enriched) of about $1.8 \mathrm{mg} / \mathrm{cm}^{2}$. Four identical targets were mounted on a copper wheel surrounded by a cooling device, and the wheel was rotated by 90° once every 150 seconds. The beam energy in the middle of the target was 182 MeV , and the beam intensity was about $0.5 \mathrm{e} \mu \mathrm{A}$. The ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$ were produced via the $\alpha \mathrm{n}$ (or 2 p 3 n) and $\alpha \mathrm{pn}$ (or 3p3n) evaporation channels, respectively. We used a helium jet in combination with a tape transport system to periodically move the radioactivity into a shielded counting room, using PbCl_{2} at $430^{\circ} \mathrm{C}$ as aerosol. The length of the capillary was about 6 m . The collection time, tape moving time, waiting time, and accumulation time were adjusted to $1.00,0.16,0.16$, and 0.84 s , respectively. To study the β-delayed proton decays, proton-gamma coincidence measurements were carried out [6-8]. Two $570 \mathrm{~mm}^{2} \times 350 \mu \mathrm{~m}$ totally depleted

Table 1. Calculated and experimental relative branching ratios $\left(b_{\beta p}\right)$ to different final states in ${ }^{139}$ Eu from the β p decay of ${ }^{140} \mathrm{~Tb}$, assuming different values for the initial spin and parity of ${ }^{140} \mathrm{~Tb}$. The experimental relative $b_{\beta p}$ leading to the $15 / 2^{-}$ state was normalized to 30 .

Initial spin and parity of ${ }^{140} \mathrm{~Tb}$	Relative $b_{\beta p}$ to the final states				
	G.S.	323 keV	427 keV	531 keV	877 keV
6^{-}	66.9	13.0	12.1	7.9	0.1
6^{+}	63.3	14.2	13.4	8.8	0.2
7^{-}	46.5	27.8	15.1	9.7	0.9
7^{+}	45.6	29.5	14.6	9.6	0.7
8^{-}	28.9	44.4	13.4	8.7	4.5
8^{+}	24.7	43.6	15.6	10.3	5.7
Exp. value		30 ± 4	12 ± 3	8.5 ± 2	<1

Fig. 1. The measured $\gamma(\mathrm{X})$-ray spectrum in coincidence with delayed protons from 3.0 to 7.0 MeV observed in the reaction ${ }^{40} \mathrm{Ca}+{ }^{106} \mathrm{Cd}$. The intense peaks are labeled by their energies in keV and their β p precursors.
silicon surface barrier detectors located on two opposite sides of the movable tape were used to detect the protons. Behind each silicon detector a coaxial $\mathrm{HpGe}(\mathrm{GMX})$ was placed to observe $\gamma(\mathrm{X})$-rays. Energy and time spectra of $\gamma(\mathrm{X})$-rays and protons were recorded in both single and coincidence modes.

The observed $\gamma(\mathrm{X})$-ray spectrum gated on β-delayed protons of $3.0-7.0 \mathrm{MeV}$ is shown in fig. 1. The intense peaks, except 511 keV and X-rays, are labeled with their energies in keV and their β-delayed proton precursors. In particular, the 323,427 and $531 \mathrm{keV} \gamma$ lines were assigned to the $15 / 2^{-} \rightarrow 11 / 2^{-}$and to two different $13 / 2^{-} \rightarrow$ $11 / 2^{-}$transitions in the proton daughter nucleus ${ }^{139} \mathrm{Eu}[9]$ following the β p decay of ${ }^{140} \mathrm{~Tb}$, while the 329,508 and

Fig. 2. The energy spectrum of β-delayed protons gated on the $323 \mathrm{keV} \gamma$ line in ${ }^{139} \mathrm{Eu}$ (histogram: experimental result; solid line: statistical-model calculations assuming an initial spin of 7 for the β p precursor ${ }^{140} \mathrm{~Tb}$). The insert displays the decay curve of the $323 \mathrm{keV} \gamma$ line gated on the β-delayed protons.
$628 \mathrm{keV} \gamma$ lines were assigned to the $2^{+} \rightarrow 0^{+}, 4^{+} \rightarrow 2^{+}$ and $6^{+} \rightarrow 4^{+}$transitions in the proton daughter nucleus ${ }^{140} \mathrm{Gd}$ [10] following the β p decay of ${ }^{141} \mathrm{Dy}$. We did not observe a γ line at an energy of 554 keV , which would correspond to the $19 / 2^{-} \rightarrow 15 / 2^{-}$transition in ${ }^{139} \mathrm{Eu}$.

The energy spectrum of β-delayed protons gated on the $323 \mathrm{keV} \gamma$ line of ${ }^{139} \mathrm{Eu}$ is shown in fig. 2, while the inset displays the decay curve of the $323 \mathrm{keV} \gamma$ line when gated on the β-delayed protons. From the decay curve the half-life of ${ }^{140} \mathrm{~Tb}$ was extracted to be $(2.0 \pm 0.5) \mathrm{s}$, which is consistent with the result given by Wilmarth et al. [1] as well as with our previous result reported in ref. [4].

The relative branching ratios $\left(b_{\beta p}\right)$ to different final states in the proton daughter nucleus ${ }^{139} \mathrm{Eu}$ observed in the $\beta \mathrm{p}$ decay of ${ }^{140} \mathrm{~Tb}$ and the proton energy spectra were calculated for various values of the initial spin and parity of ${ }^{140} \mathrm{~Tb}$ using a statistical model [11], assuming a structureless Gamow-Teller (GT) β-strength function obtained from Gross theory [12]. The calculated $b_{\beta p}$ are listed in table 1 together with the experimental values, which were determined by means of the relative intensities of the correspondent γ lines in fig. 1. Unfortunately, we could not

Fig. 3. The energy spectrum of β-delayed protons gated on the $329 \mathrm{keV} \gamma$ line in ${ }^{140} \mathrm{Gd}$ (histogram: experimental result; solid line: statistical-model calculations assuming an initial spin of $9 / 2$ for the β p precursor $\left.{ }^{141} \mathrm{Dy}\right)$. The insert displays the decay curve of the $329 \mathrm{keV} \gamma$ line gated on the β-delayed protons.

Table 2. Calculated and experimental relative branching ratios $\left(b_{\beta p}\right)$ to different final states in ${ }^{140} \mathrm{Gd}$ from the β p decay of ${ }^{141} \mathrm{Dy}$, assuming different values for the initial spin and parity of ${ }^{141} \mathrm{Dy}$. The experimental relative $b_{\beta p}$ leading to the 2^{+}state was normalized to 50 .

Initial spin and parity of	Relative $b_{\beta p}$ to the final states			
	G. S.	329 keV	836 keV	1464 keV
	$\left(0^{+}\right)$	$\left(2^{+}\right)$	$\left(4^{+}\right)$	$\left(6^{+}\right)$
$7 / 2^{-}$	18.0	59.4	22.1	0.4
$7 / 2^{+}$	12.8	64.0	22.5	0.7
$9 / 2^{-}$	4.9	49.2	41.1	4.8
$9 / 2^{+}$	9.5	48.6	38.8	3.1
$11 / 2^{-}$	3.9	32.3	50.1	13.6
$11 / 2^{+}$	1.2	29.3	55.3	14.3
Exp. value		50 ± 6	39 ± 8	7 ± 4

obtain the experimental $b_{\beta p}$ to the ground state in ${ }^{139} \mathrm{Eu}$ because of the restriction of the $\mathrm{p}-\gamma$ coincidence method. Comparing the calculated branching ratios with the experimental values, the closest agreement is found when assuming the ground-state spin and parity of ${ }^{140} \mathrm{~Tb}$ to be 7^{+}or 7^{-}. Moreover, the proton energy spectrum is reproduced reasonably well if ${ }^{140} \mathrm{~Tb}$ is assumed to have 7^{+}or 7^{-}(see fig. 2), the difference of the calculated energy spectra between the two parities being too small to be seen in fig. 2.

The energy spectrum of β-delayed protons gated on the $329 \mathrm{keV} \gamma$ line of ${ }^{140} \mathrm{Gd}$ is shown in fig. 3, while the inset displays the decay curve of the $329 \mathrm{keV} \gamma$ line when gated on the β-delayed protons. From the decay curve the half-life of ${ }^{141}$ Dy was extracted to be $(0.9 \pm 0.2) \mathrm{s}$, which is consistent with the result given by Wilmarth et al. [1].

The relative $b_{\beta p}$ to different final states in the proton daughter nucleus ${ }^{140} \mathrm{Gd}$ observed in the β-delayed proton decay of ${ }^{141} \mathrm{Dy}$ and the proton energy spectra were also
calculated for various values of the initial spin and parity of ${ }^{140} \mathrm{~Tb}$ using the statistical model [11]. The calculated $b_{\beta p}$ are given in table 2 together with the experimental values. Comparing the calculated branching ratios with the experimental values, the closest agreement is found when assuming the ground-state spin and parity of ${ }^{141} \mathrm{Dy}$ to be $9 / 2^{+}$or $9 / 2^{-}$. Moreover, the proton energy spectrum is reproduced reasonably well if ${ }^{141}$ Dy is assumed to have $9 / 2^{+}$or $9 / 2^{-}$(see fig. 3), the difference of the calculated energy spectra between the two parities being too small to be seen in fig. 3 .

To shed more light on the ground-state properties of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$, the configuration-constrained NPES were calculated using the Woods-Saxon-Strutinsky method [13]. For ${ }^{140} \mathrm{~Tb}$ a minimum at deformation parameters $\beta_{2}=0.243$ and $\gamma=22.5^{\circ}$ was found, which corresponds to the configuration $\left(\pi 5 / 2^{-}[532] \times \nu 9 / 2^{-}[514]\right)$ 7^{+}, while for ${ }^{141} \mathrm{Dy}$ a minimum at $\beta_{2}=0.242$ and $\gamma=21.5^{\circ}$ was observed corresponding to the configuration $\left(\nu 9 / 2^{-}[514]\right) 9 / 2^{-}$. These findings are not only in good agreement with the experimental results related to β p decay, but also with the spin assignments for ${ }^{141}$ Dy given by Gilat et al. [2] and for ${ }^{140} \mathrm{~Tb}$ as deduced in our previous study of the $\left(\mathrm{EC}+\beta^{+}\right)$decay of ${ }^{140} \mathrm{~Tb}[4]$. We, therefore, assign 7^{+}and $9 / 2^{-}$to the ground state of ${ }^{140} \mathrm{~Tb}$ and ${ }^{141} \mathrm{Dy}$, respectively.

The ground-state spin and parity of ${ }^{143}$ Dy was proposed as $1 / 2^{+}$by Audi et al. [14] based on systematics and later supported by an in-beam γ study [15]. Moreover, the existence of an $11 / 2^{-}$isomer with the energy of 310.7 keV was conjectured from these in-beam γ studies. Later, the decay of ${ }^{143} \mathrm{Dy}$ was observed and $\left(\mathrm{EC}+\beta^{+}\right)$ as well as β p decay schemes for the $1 / 2^{+}$ground state and the $11 / 2^{-}$isomer of ${ }^{143} \mathrm{Dy}$ were proposed by us in ref. [5]. Calculating the configuration-constrained NPES also for ${ }^{143} \mathrm{Dy}$, a minimum at $\beta_{2}=0.202$ and $\gamma=26^{\circ}$ was obtained, which corresponds to the configuration of $\nu 1 / 2^{+}[400]$. In addition, a second minimum at $\beta_{2}=0.198$ and $\gamma=47^{\circ}$ was found, which corresponds to the spin assignment of $11 / 2^{-}$. Thus the NPES do support also our previous experimental results obtained for ${ }^{143} \mathrm{Dy}$.

This work was supported by the National Natural Science Foundation of China (10375078 and 10475002).

References

1. P.A. Wilmarth, J.M. Nitschke, R.B. Firestone et al., Z. Phys. A 325, 485 (1986).
2. J. Gilat, J.M. Nitschke, P.A. Wilmarth et al., Phys. Rev. C 40, 2249 (1989).
3. R.B. Firestone, J. Gilat, J.M. Nitschke et al., Phys. Rev. C 43, 1066 (1991).
4. S.-W. Xu, Y.-X. Xie, Y. Yu et al., Eur. Phys. J. A 8, 437 (2000).
5. S.-W. Xu, Y.-X. Xie, Z.-K. Li et al., Eur. Phys. J. A 16, 347 (2003).
6. S.-W. Xu, Y.-X. Xie, Z.-K. Li et al., Phys. Rev. C 60, 061302(R) (1999).
7. S.-W. Xu, Y.-X. Xie, Z.-K. Li et al., Z. Phys. A 356, 227 (1996).
8. Z.-K. Li, S.-W. Xu, Y.-X. Xie et al., Phys. Rev. C 56, 1157 (1997).
9. T.W. Burrows, Nucl. Data Sheets 92, 759 (2001).
10. L.K. Peker, Nucl. Data Sheets 73, 261 (1994).
11. P. Hornshoj, K. Wilsky, P.G. Hansen et al., Nucl. Phys. A 187, 609 (1972).
12. K. Takahashi, M. Yamada, T. Kondoh, At. Data Nucl. Data Tables 12, 101 (1973).
13. W. Nazarewicz, J. Dudek, R. Bengtsson et al., Nucl. Phys. A 435, 397 (1985).
14. G. Audi, O. Bersillon, J. Blachot et al., Nucl. Phys. A 624, 1 (1997).
15. K.J. Tuli, Nucl. Data Sheets 94, 771 (2001).

[^0]: a e-mail: xsw@lzb.ac.cn

